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A Transition in a Noisy Linear System 
Driven by a Periodic Signal 
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We consider a one-dimension linear random walk between two trapping points 
in which the transition probabilities vary periodically in time. An earlier analysis 
of this system showed that the mean time to trapping of a particle in this system 
exhibits a minimum when considered as a function of frequency. In this note we 
show that this parameter makes a transition in behavior from a monotonic 
decrease with increasing amplitude of the periodic term to a monotonic increase 
with this parameter depending on the frequency. A physical argument is 
suggested to explain this behavior. Confirmation of this crossover can also be 
derived from a diffusion model. 
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A considerable literature has recently developed that is devoted to the 
analys is  of the interaction of noise and periodic forcing functions in 
the framework of nonl inear  dynamical  systems. The field of stochastic 
resonance, for example, is devoted to an examinat ion of the consequences 
of just  such interactions. (j) While it is not too surprising that there are 
interesting effects for nonl inear  systems, there are also a number  of par- 
tially unexpected features that emerge from the analysis of interactions of 
noise and periodic forcing functions even for linear systems. Some of the 
more unexpected effects produced by an oscillatory field can be of more 
than academic interest, since pulse-field electrophoresis plays a prominent  
role in the a rmamenta r ium of the biochemist, t2'3~ particularly in the area of 
protein separations. Some time ago Fletcher eta / .  t4) studied the effects of 
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the frequency of an oscillating field on the average survival time of a 
one-dimensional random walker or Brownian particle that diffuses on a 
line connecting two traps. The emphasis in the cited paper was on the 
effects of frequency on the mean first passage time to trapping (MFPT).  In 
particular, it was shown that the MFPT,  considered as a function of the 
frequency of the sinusoidal forcing time co, both for the random walk in 
discrete time and for the diffusion process, exhibits a minimum as the 
frequency ~o is varied. This resonance effect can be explained in fairly 
straightforward terms. In this note we examine the M F P T  not as a 
function of the frequency, but rather as a function of the amplitude of the 
forcing field, a parameter that we denote by e/2. The M F P T  occurs as an 
important parameter in a theoretical analysis of the motion of a DNA 
molecule in the biased reptation model. (5 7) We show that in our simplified 
model the M F P T  exhibits a type of transition in that for some frequencies 
the M F P T  increases with increasing e, for others it is a nonmonotonic 
function of e, and for still others it is a decreasing function of the amplitude 
of the bias parameter. We also present a physical picture to support this 
apparently unintuitive behavior. 

In order to demonstrate the behavior of the mean first passage time as 
a function of amplitude, we first simulated a random walk on a discrete 
lattice. Let X,, be the position of the random walker at step n, 

X,,+~=X.+v. (1) 

where the {v.} are independent random variables whose properties are 
specified by the prescription 

v . =  +1 with probability �89 _+~ cos(tnn)] (2) 

where 0 < e ~< 1. 
The traps are assumed located at sites 0 and 2a, and the initial 

location of the random walker is at site a. Let the probability that the 
random walker is at site j at step n be denoted by p.(j). This function 
satisfies the evolution equation 

p . + l ( j ) = � 8 9  +~cos(con)] p.( j -1)+�89 - ~ c o s ( ~ n ) ]  p.( j+ 1) (3) 

which must be solved subject to the initial and boundary conditions 

Po(J) = 6/,~ and p.(0) = p.(2a) = 0 (4) 

While the combination of Eqs. (3) and (4) is solvable in closed form at zero 
frequency, a numerical solution of the recursion relation is required for 
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t ime-dependent transition probabilities. When the p,,(j) are known, the 
MFPT,  (n(e, o9)), can be calculated as 

(n(e, o9)) = ~ p,,(j) (5) 
j = 0  n = 0  

Notice that one cannot  use a formalism based on an adjoint operator  to 
calculate (n(e, ~o)), because the coefficients in Eq. (3) depend on n. 

Specific results for (n(e, o~)) regarded as a function of  e are plotted 
in Fig. 1 for the value a = 25. The three curves that are shown indicate a 
transition in behavior from the strict decrease in the Iow-o~ regime to 
values of 09 which lead to nonmonoton ic  behavior as the amplitude of the 
periodic term is increased, and a final transition to a regime in which the 
function (n(e, ~o)) increases monotonical ly with e. A qualitative explana- 
tion of the results shown in Fig. 1 is that as e increases, the random walker 
is initially pushed toward the boundary  at 2a. Because the cosine term 
eventually reverses sign, those particles that survive tend to move toward 
the boundary  at 0, their average position during the cycle passing through 
the initial position. However,  since they are now further from j =  2a than 
if they had been at their initial point, they are less likely to reach that trap- 
ping point in the following cycle. If the amplitude e is sufficiently great, the 
random walker which started at lattice site a will find itself at some lattice 
site to the left of j = a at the end of the second cycle. Hence, when the third 
cycle starts, it will be harder to reach the trapping point at 2a than it was 
at n = 0. This type of behavior will then continue and may be regarded as 
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Fig. 1. Curves of (n(e, ~))  plotted as a function of the amplitude e for the value a = 25 and 
three values of the driving frequency r The curve drawn for to=0.15 exhibits a very slight 
dip before it begins to increase, while the other two curves show monotonic behavior. 
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a feedback mechanism, suggesting the increase in (n(e, co)) observed for 
o9 = 0.25 in Fig. 1. Similar results are valid for other values of interval 
length than the one chosen to generate the figure. 

We have demonstrated the existence of three types of qualitative 
behavior of (n(e, og)> regarded as a function ofe. The three regimes 
depend on the value of co. At sufficiently low values of o9 (a regime specified 
by o9<o9~) (n(e, og)) is a strictly decreasing function of e, while in the 
intermediate regime (o9~ ~< co < o92) the function (n(e, to)) has a minimum 
when it is considered as a function of e. Finally, in the high-frequency 
region, o9>o92, (n(e, co)> increases monotonically with e. The critical 
parameters o9~ and o92 have been calculated as a function of the length of 
the interval. Some results of this calculation are shown in Table I. It is clear 
that the critical frequencies must decrease as the length of the interval 
increases, since the bias that tends to drive the particle toward the trap 
during the first cycle must be effective for a long enough time for there to 
be a significant probability that the particle will actually reach the trap 
during that cycle. Since the average bias during the first cycle in which 
cos(ogt)>0 is proportional to 1/o9, we expect that o9~ should be 
approximately proportional to 1/a at sufficiently large values ofa. These 
predictions are in rough agreement with the data in the table for a = 50 and 
100. Similarly, we expect that o92 is approximately proportional to 1/a, 
which again is approximately confirmed by the data at the largest values 
of a. While we have only demonstrated a kind of phase transition in the 
case of the MFPT, we anticipate that such effects will occur in higher 
moments of the first passage time as well. 

It is possible, by considering the limiting cases e = 0 and e = 1, to see 
that there must be a transition in the behavior of (n(og, e))  regarded as a 
function of co. However, the discrete-time formulation leads to rather com- 
plicated equations, while the continuum analog leads to results that are 
somewhat easier to analyze. This analog consists of a diffusion equation 
augmented by a sinusoidal velocity term: 

Op ~ 32p 3p 
~ - =  u ~ x  2 - v cos(ogt) ~x (6) 

T a b l e  I 

a=10 a=25 a=50 a=100 

o91 0.185 0.086 0.048 0.028 
o92 0.32 0.195 0.120 0.08 
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where D is a diffusion constant and v a constant velocity. The initial and 
boundary conditions that p(x,  t) must satisfy are 

p(x,  O ) = 6 ( x - a ) ,  p(0, t ) = p ( 2 a ,  t ) = 0  (7) 

It is known that finding a solution to Eq. (6) in the presence of trapping 
sites poses a notoriously difficult problem, t8) However, we can consider the 
two limiting cases of interest in which the amplitude of the forcing field 
goes to zero, and the second case in which diffusion can be regarded as 
being negligible in comparison with the biased motion. 

In pursuit of this goal it is convenient to rephrase Eq. (6) in terms of 
the dimensionless variables 

2ao x D t 4a2 tO 
e =--D--' Y=~aa' Z = ~ a  2' v=  D (8) 

to enable us to specify the large or small parameters that characterize the 
process. Thus, the parameter e is the dimensionless amplitude of the forcing 
term. Equation (6) can now be rewritten in terms of these parameters as 

dp g2p c o s ( v r ) ~  (9) -~T = ay2 - e  

with the boundary conditions p(0, z ) =  p(1, z ) =  0 and the initial condition 
p ( y , O ) = 6 ( y - 1 / 2 ) .  The two limits to be considered are e = 0 ,  which 
corresponds to a pure diffusion process, and e >> 1. In the second of these 
cases we argue that the diffusive term can be dropped. The resulting equa- 
tion then corresponds to the Strictly deterministic process 

p=e  cos(w) (10) 

Dropping the diffusive term can be justified provided that e cos(w)>> 1, 
which means that either the particle reaches the boundary during the first 
cycle of the deterministic motion or does not do so at all. 

The dimensionless mean first passage time for pure diffusion (e=  0) is 
readily found to be (x)dirr= 1/8, while for the deterministic process one 
finds 

'sin (~)do,= v 

or, in the original dimensioned variables, 

a2 = - - l s i n - ' ( 7 )  (12) (t)din'= 2--~ ; ( t )ac,  tO 
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A compar ison of these expressions shows that  when 09 is held fixed and the 
parameter  a is varied it is possible for ( l ) d i f f / ( t ) d e t  t o  be either greater or 
less than 1, depending on the frequency 09, a conclusion which agrees with 
the extreme values in our simulated random walk data. In this picture the 
frequency at which a crossover occurs between the two limiting behaviors 
co, is the solution to 

(a2o9c~ 2D (13) 
sinc \"2-D--J = a--v- 

in which sinc(x)=sin(x)/x. Since sinc'-(x)~<l Eq. (13)  implies that  a 
crossover can only occur provided that  v satisfies v > 2D/a. 
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